Application Strong enhancement of piezoelectric constants in Sc_xAl_{1-x}N: First-principles calculations

Outline

Introduction

- ✓ Piezoelectrics for high-temperature applications
- Piezoelectric enhancement in wurtzite Sc_xAl_{1-x}N
 - ✓ First-principles analysis
 - ✓ Descriptor for searching of high-piezo wurtzites
- Computational materials exploration

Electric Materials

- Dielectrics: insulators
- Piezoelectrics: non-polar/polar w. applied stress/strain
- Pyroelectrics: spontaneous polarization/unswitchable
- Ferroelectrics: switchable \rightarrow FERAM

Piezoelectricity

• Electric polarization change by external stress/strain.

• Inversely, deformation can be induced by applying electric fields.

• Piezoelectric coefficients: e- and d-tensors

$$\Delta P_{z} = e_{zz} \varepsilon_{zz} = d_{zz} \sigma_{zz}$$

Electric Mechanical

Piezoelectric Devices

Mechanical Electric

- Piezoelectric ignition
- Acceleration or pressure sensors
- Piezoelectric microphone
- Floor electricity generation

http://www.jreast.co.jp/development/ theme/pdf/yukahatsuden.pdf

- Piezoelectric actuator
- Piezoelectric buzzer and speaker
- Ultrasonic generator and sensor

Voltage ←→ Ultrasonic Waves http://www.ndk.com/jp/sensor/ultrasonic/basic02.html

Surface acoustic wave (SAW) devices

- High-frequency SAW filter
- SAW touch screen

http://www.tdk.co.jp/techmag/inductive/201012/index2.htm

Piezoelectric Materials

Perovskite Materials

PbZr_xTi_{1-x}O₃ (x~0.52)
 d ~ 410 pC/N, T_c~250°C

- Wurtzite Materials
 - AIN *d* ~ 5 pC/N, *T*_C > 1000°C
 - ZnO
 d ~ 12 pC/N

Wurtzite Materials:

- could be used at high-temperature environments.
- should increase piezoelectric constants.

Highest Piezoelectricity: Sc_xAl_{1-x}N

A. Teshigahara et al., Proc. of International Ultrasonics Symposium 2012.

Piezoelectric constant of Sc_xAl_{1-x}N

- Sc_xAl_{1-x}N films synthesized by dual cospattering techniques
- Piezoelectric constant
 - x < 43% : Enhance as x increases
 - 43% < x : Diminish rapidly by a structure transition
- Issues
 - Origin of the enhancement by Sc
 - Structural instability at x ~ ¹/₂
- Price of Sc ~ Pt
 - Need to search for other candidates

First-Principles Methods

• Density Functional Theory — GGA-PBE xc functional

Hohenberg–Kohn 1964, Kohn–Sham 1965 Perdew–Burke–Ernzerhof 1996

 All-electron Full-potential Linearized Augmented Plane Wave (FLAPW) method implemented in in-house HiLAPW code

> Wimmer–Krakauer–Weinert–Freeman 1981 Soler–Williams 1989

Berry–phase method for electric polarization

Resta 1992 King-Smith–Vanderbilt 1993 Zhong–Vanderbilt 1994

Models of Sc_xAl_{1-x}N

• w-AIN (16 atom supercell)

Sc_xAl_{1-x}N models: All possible configurations and concentrations of Sc at Al sites

Piezoelectric constants

$$P_{i} = \sum_{\substack{j=1\\6}}^{6} e_{ij} \varepsilon_{j}$$
$$P_{i} = \sum_{i=1}^{6} d_{ij} \sigma_{j}$$

• Calculation procedure

- 1. Substitute AI by Sc and optimize structure
- 2. Piezoelectric e constants
- Zhong–Vanderbilt 1994

$$e_{ij} = \frac{\partial P_i}{\partial \varepsilon_j} \bigg|_{u} + \sum_{\alpha, k} \frac{\partial P_i}{\partial u_{\alpha, k}} \bigg|_{\varepsilon} \frac{\partial u_{\alpha, k}}{\partial \varepsilon_j} = e_{ij}^{\text{clamp}} + e_{ij}^{\text{inter}}$$

Born effective charge

$$Z_{\alpha,ij}^* = \frac{V}{e} \frac{\partial P_i}{\partial r_{\alpha,j}}$$

3. Elastic stiffness tensor

$$E(\varepsilon) - E(0) = \frac{V_0}{2} \sum_{i,j=1}^{6} C_{ij} \varepsilon_i \varepsilon_j$$

- 4. Elastic compliance tensor $S = C^{-1}$ 5. Piezoelectric *d* constant $d_{ij} = \sum_{k=1}^{6} e_{ik} S_{kj}$
- 6. Canonical ensemble average over models at x

Piezoelectricity of Sc_xAl_{1-x}N

9

Structure Stability of Sc_xAl_{1-x}N

- Most stable structures:
- AIN (x=0) : polar hexagonal wurtzite
- ScN (x=1) : Non-polar cubic rock-salt
- Two types of Sc_xAl_{1-x}N models

Wurtzite (16 atom/cell) Rock salt (16 atom/cell)

Structure stability analyses

 $\Delta H = (1 - x)E(\text{w-AlN}) + xE(\text{c-ScN}) - E(\text{Sc}_x\text{Al}_{1-x}\text{N})$

- 0.6(a) 0.5 ∆*H* (eV/f.u.) 0.4 0.3 0.2 Wurtzite Cubic 0.10.00.55 (b) Wurtzite (c) 0.50 Exper. (c) (∭0.45 v, 0.40 Cubic (a) Exper. (a) 0.35 Wurtzite (a) 0.30 0.000.25 0.50 0.75 1.00 x of $Sc_{x}Al_{1-x}N$
- For 0.5 < x, cubic phases are more stable than wurtzite phases.

Search for High-Piezo Materials

- Sc_xAl_{1-x}N explained well from first principles
- Search for novel materials with superior performances
 - Cation replacement:
 A_xB_{1-x}N (A = Sc, Y, La & B = AI, Ga, In)
 - Anion replacement: AIN_{1-x}P_x
 - Long-range structure effect: Zinc-blende (111) stacking: AIP, GaP, InP
- Need to get a simple guideline (descriptor) that measures the piezoelectricity of wurtzite materials.

H. Momida, A. Teshigahara, TO, AIP ADVANCES 6, 065006 (2016)

Piezoelectricity of Wurtzite

- Stable wurtzite crystals: ZnO, BeO, AIN, GaN
- More than twelve wurtzite crystals reported

Piezoelectricity of Wurtzite

• Sc_xAl_{1-x}N results also support the e₃₃-c/a relation

Structure of Wurtzite

• Atomic position parameter (*u*) and lattice constant ratio (*c*/*a*)

- Ideal wurtzite structure
- Compose of regular tetrahedron
- $c/a = (8/3)^{1/2} = 1.633$
- *u* = 0.375
- Higher u (tetrahedral → pyramidal) for smaller c/a isotropic → anisotropic: must be preferable to high polarization ¹⁴

Mechanism of $e_{33} \propto c/a$

Predicted Data for Machine Learning

Binary wurtzite materials found in literatures (mostly in metastable phases)

Material	<i>e</i> ₃₃ (C/m²)	<i>C</i> ₃₃ (GPa)	<i>d</i> ₃₃ (pC/N)	Material	<i>e</i> ₃₃ (C/m²)	<i>С</i> ₃₃ (GPa)	d ₃₃ (pC/N)
MgO	1.70	164	10.35	ZnS	0.09	144	0.62
AIN	1.42	388	3.65	CuBr	0.08	63	1.25
ZnO	1.04	185	5.64	AIP	0.05	149	0.36
InN	0.94	215	4.36	Agl	0.05	41	1.18
GaN	0.44	290	1.53	GeC	-0.01	430	-0.03
SiC	0.33	501	0.65	CdTe	-0.04	56	-0.67
BP	0.32	525	0.61	Cul	-0.04	71	-0.61
CdS	0.31	87	3.53	ZnSe	-0.10	103	-0.92
CuCl	0.26	80	3.20	ZnTe	-0.22	85	-2.55
CuH	0.22	144	1.50	GaP	-0.25	208	-1.21
BeO	0.22	485	0.44	BN	-1.08	1112	-0.97
MgTe	0.18	58	3.13	TIN	Metallic		
CdSe	0.15	69	2.14	CdO	Metallic		

Method: Generalized Linear Models

Response (y) and explanatory (x) variables (target and descriptor)

$$y = (y_1, y_2, \dots, y_n) x = (x_1, x_2, \dots, x_p)$$

$$y = \beta x = \sum_{j=1}^p x_{ij} \beta_j$$

$$\left(\begin{array}{c} L_p \text{ norm } \|X\|_q = \left(\sum_{j=1}^p X_j^q\right)^{1/q} \\ \sum_{j=1}^p X_j^q \end{array} \right)$$

• Least square fitting

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \left\| y - \beta x \right\|_{2}^{2} = \underset{\beta}{\operatorname{argmin}} \left[\sum_{i=1}^{n} (y_{i} - \sum_{j=1}^{p} x_{ij} \beta_{j})^{2} \right]$$

Elastic net penalization: Automatic variable selection

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \left[\left\| y - \beta x \right\|_{2}^{2} + \lambda \left\{ \alpha \left\| \beta \right\|_{1} + \frac{1 - \alpha}{2} \left\| \beta \right\|_{2}^{2} \right\} \right] = \underset{\beta}{\operatorname{argmin}} \left[\left\| y - \beta x \right\|^{2} + \lambda \left\{ \frac{1 - \alpha}{2} \sum_{j=1}^{p} \beta_{j}^{2} + \alpha \sum_{j=1}^{p} \left| \beta_{j} \right| \right\} \right]$$

- α = 0 : Ridge regression
- α = 1 : Least absolute shrinkage and selection operator (LASSO)
- Best α giving a minimum error ($0 \le \alpha \le 1$)
- Best λ selected with cross validation: Need many run

Model: Target and Descriptor

Target variable

- *e*₃₃ Piezoelectric e constant
- C_{33} Elastic constant
- d_{33} Piezoelectric d constant

Descriptors #1 (Material data)

 E_{σ} Band gap e_{33}^{cl} Clamped piezoelectric e constant e_{33}^{in} Internal piezoelectric e constant Z_{33} Born effective charge of cation $du/d\varepsilon$ Atomic position change by strain **5** descriptors → excluded **Descriptors #2 (Structure data)** Lattice constant a Lattice constant С Volume of unit cell VLattice constant ratio c/aInternal atomic position U **5** descriptors

$$e_{33} = \sum_{i} \beta_{i} D_{i}$$

Descriptors #3 (Atomic data)

- *Z*_v Nominal ionic valence
- $(R_{\rm a}, R_{\rm c})$ Pauling's ionic radius
- $(X_{\rm a}, X_{\rm c})$ Pauling's electronegativity
- $(N_{\rm a}, N_{\rm c})$ Atomic number

+ 14 combinations of *R*, *X*, or *N*

$R_{\rm a}R_{\rm c}/(R_{\rm a}+R_{\rm c})$	$(R_{\rm a} + R_{\rm c})^2$
$R_{\rm a}R_{\rm c}/(R_{\rm a}-R_{\rm c})$	$(R_{\rm a} - R_{\rm c})^2$
$(R_{\rm a}+R_{\rm c})/R_{\rm a}R_{\rm c}$	
$(R_{\rm a}-R_{\rm c})/R_{\rm a}R_{\rm c}$	
$(R_{\rm a} + R_{\rm c})/(R_{\rm a} - R_{\rm c})$	
$(R_{\rm a}-R_{\rm c})/(R_{\rm a}+R_{\rm c})$	
	$R_{a}R_{c}/(R_{a}+R_{c})$ $R_{a}R_{c}/(R_{a}-R_{c})$ $(R_{a}+R_{c})/R_{a}R_{c}$ $(R_{a}-R_{c})/R_{a}R_{c}$ $(R_{a}+R_{c})/(R_{a}-R_{c})$ $(R_{a}-R_{c})/(R_{a}+R_{c})$

49 (=7+3*14) descriptors

Result: Target = e₃₃

- Dominant descriptors not significantly depend on α
- Minimum error for α =0.6, λ =0.186
- Only 5 descriptors selected

$$e_{33} \approx -6.82(c/a) + 0.19\left(\frac{\chi_{\rm A} - \chi_{\rm C}}{\chi_{\rm A}\chi_{\rm C}}\right) + 0.066\left(\frac{\chi_{\rm A} - \chi_{\rm C}}{\chi_{\rm A} + \chi_{\rm C}}\right) + 0.072(\chi_{\rm A} - \chi_{\rm C})^2 - 0.618\left(\frac{1}{N_{\rm A} - N_{\rm C}}\right) + 11.27$$

- GLM roughly explains the FP results (
- Poorer agreements between GLM and FP than our expectation ...
- Missing information of ionic valences
- Changing target variable instead of expanding descriptors
 - Target: $e_{33} \rightarrow e_{33}/Z$ e_{33} normalized with nominal ionic valences Z

Result: Target = e_{33}/Z

- Dominant descriptors not significantly depend on α
- Minimum error for $\alpha = 1$, $\lambda = 0.041$
- Only 4 descriptors selected

$$\frac{e_{33}}{Z} \approx -4.27(c/a) + 0.06 \left(\frac{1}{R_{\rm A} - R_{\rm C}}\right) + 0.04(\chi_{\rm A} - \chi_{\rm C})^2 - 0.20 \left(\frac{1}{N_{\rm A} - N_{\rm C}}\right) + 6.99$$

- Linearity fairly improved compared with the target = e₃₃ case
- c/a is always the predominated descriptor.
- A general guideline for enhancing e₃₃ of wurtzites
 Higher e₃₃/Z with decreasing lattice ratio (c/a)
- Confirmation of the correlation between e₃₃ and c/a
- As minor effects,
 - \checkmark 1/(R_A–R_c) : ionic radius difference
 - ✓ $(X_A X_C)^2$: electronegativity difference
 - \checkmark 1/(N_A–N_C) : atomic number difference

Previous Reports

A. Teshigahara et al., IEEE Int. Ultrasonics Symp. Proc. (2012).

 e_{33} : nonlinear dependence on (X_A-X_C)

Strategy of Material Exploration

Search for higher-piezoelectric wurtzite materials Search for wurtzite materials with small c/a

1. Artificial reduction of *c*/*a* ratio by strain

- In-plane strains of AIN
- Films on substrates with lattice mismatch

2. Binary AB materials with small c/a (or larger $X_A - X_C$)

- MgO
- Hypothetical materials: LiH, LiF, LiCI

c'<c

a'>a

С

а

3. Third-element doping into practical materials

- Experimentally reported "Sc in AIN"
- Alkaline-earth metals doping in ZnO
- Ca_xZn_{1-x}O

Result 1 : Strained AIN

• *c*/*a* artificially controlled by in-plane strain

Result 2 : Element Combination

- Binary wurtzite AB
 - 1. Equi-valence for cation and anion $(A^{+Z}B^{-Z})$ to be insulating
 - 2. Higher electronegativity difference $(X_A X_C)$
- An example: A = Li

	X _A –X _C	R _A –R _C	C.N. *	c/a	e ₃₃ (C/m²)
LiH	1.22	1.48	4	1.512	0.79
LiF	3.00	0.76	4–6	1.571	0.72
LiCI	2.18	1.21	4	1.606	0.21
LiBr	1.98	1.35	4	1.611	0.12
Lil	1.68	1.56	4	1.624	0.04

* C.N. : Coordination number guessed by critical radius ratio

8 (CsCl-type)	6 (NaCI-type)	4 (ZnS-type)	3 (Triangle)
$\frac{R_A}{R_C} < 1.366$	$1.366 < \frac{R_A}{R_C} < 2.414$	$2.414 < \frac{R_A}{R_C} < 4.449$	$4.449 < \frac{R_A}{R_C} < 6.464$

Note that thermodynamically stable phase is NaCl structure, unfortunately. 24

Result 3 : Third-Element Doping

- Base material: Technologically useful ZnO
- Substitute Zn by A : A_xZn_{1-x}O
- Information obtained through vast published papers
 - Ca substitution reduces c/a in ZnO X. F. Fan et al., J. Phys.: Cond. Mat. 20, 235221 (2008).

Summary

First-principles study on piezoelectricity of wurtzites

- Understanding of enhanced piezoelectricity in Sc_xAl_{1-x}N
 - Strong correlation between e₃₃ and c/a

H. Momida, A. Teshigahara, TO, AIP ADVANCES 6, 065006 (2016)

- Conformation by machine-learning analysis
- Materials exploration of highly piezoelectric wurtzites
 - Strain
 - Element combinations
 - Doping → a promising candidate Ca_{0.5}Zn_{0.5}O
 → Need to check thermodynamical stability

H. Momida, TO, Appl. Phys. Express <u>11</u>, 041201 (2018).