社3人再教育 ナノマテリアル・ナノデバイスデザイン学 第2学期 第1回 2024年10月7日実施 1B-1-B

ナノ混晶・超構造デバイスデザイン

大阪大学工学研究科 株式会社アカデメイア 赤井久純

ナノ混晶・超構造デザインの必要性

- ●単体の数は有限
 - ●性質は一意的
 - 性格の良い単体は少ない
 - 安定性、環境調和、資源量、...
- ●混晶合金・超構造の数は無限
 - ●様々な性質を創出
 - ●構造材料、機能性材料、デバイス材料
 - ●無害で資源量の多い単体をベースにできる

		Fe	
		Si	
	=	T	
J			
		С	
		-	
		X	

Pt

混晶を用いたナノ構造

ナノサイズで組成制御された混晶とそれらの作る構造

・超格子、量子ドット、接合構造 ・デルタ・ドーピング、変調ドーピング ・析出ナノ構造

- ●自己組織化構造
- ●ナノ粒子、ナノワイア

デザインのねらい

物性

機能

- 電気的性質
 - 熱電材料
- 磁気的性質
 - •磁化、Tc、磁気異方性
- 光学的性質
 - •光学応答、磁気光学効果
- 化学的性質
 - 触媒作用、表面反応
- 熱力学的性質

- ・高効率エネルギー変換
 材料・素子
- 環境調和材料
- スピントロニクス材料
 - MRAM
 - 磁気光学素子
- ・ハーフメタル
 - GMR, TMR, MRA
- ・ヘテロ接合
- •新機能FET
- 量子ビット

ナノ混晶・超構造デザインの手法

第一原理電子状態計算(ab-initio) 密度汎関数法の基づく局所密度近似(LDA) グリーン関数法(KKR) コヒーレントポテンシャル近似(CPA)

例えばMACHIKANEYAMA (AkaiKKR) コード

http://kkr.issp.u-tokyo.ac.jp

ナノ混晶・超構造デザインの例

●内挿や外挿がきかない古典的な例(ナノ混晶でも 超構造でもないが…)

●希薄磁性半導体ヘテロ構造

●ハーフメタリック反強磁性半導体GMR素子 ●新しいGMRデバイス構造

内挿外挿が働かない古典的な例

スレーター・ポーリング曲線

外挿では予測できない

●NiにFeを混ぜていくと磁化はどのように変化するか?

内挿では予測できない

●FeにCoを混ぜていくと磁化はどのように変化するか?

量子シミュレーションをしてみると

●計算されたスレーター・ポーリング曲線

量子シミュレーションは現実を予測するか?

●スレーター・ポーリング曲線 実験と理論

希薄磁性半導体とヘテロ界面

- ●希薄磁性半導体 ●Ⅲ-Ⅴ族化合物半導体
 - (Ga,Mn)As, (In,Mn)As,...
- ●Ⅱ-ⅤⅠ族化合物半導体
 - (Zn,Co)O, (Zn,Cr)S,...

●キャリア誘起磁性メカニズム?

● 2 重交換相互作用

●pd混成

- ●d電子数
- ●軌道の対称性
- ●キャリア制御
- ●磁性イオンのパーコレーション確保
 ●次元性

キャリア誘起磁性の超構造による制御

- **II-VI/III-V**超構造
 - •磁性層とキャリア層

• Cu(AI,TM)S₂

- III-V/III-V超構造
 - •(In,Mn)As/(Al,Be)Sb界面

•GaAs:Mn/(Al,Ga,Be)As界面

・自然の超構造―カルコパイライト

• (Cd,TM)GeP₂, (Zn,TM)GeP₂

●(Cd,Mn)Te/(Al,C)(As,C) ●もっとうまいシステムはないか

Band alignment

界面近傍における ホール分布 ホールドーピング (Al,Be)Sb

強磁性安定性 (Tc)のBe濃度依存性

(In,Mn)As/(Al,Be)Sb

ハーフメタリック希薄磁性半導体

有望なスピントロトロニクス材料 例 (Ga,Mn)As, (Zn, Cr)Te

ハーフメタリック反強磁性半導体

7

半導体 2種類の磁性イオンが共存 不規則固溶体 普通(それ) それ、 を反認 ハーフメタル

普通の反強磁性とは異なり それぞれの磁気モーメント を反転したものはもとの状 態と同じではない

(ZnCrFe)S

反強磁性半導体のアンチフェーズドメイン境界

反強磁性半導体のアンチフェーズドメイン境界

スピントロニクス材料の電気伝導の計算法

久保グリーンウッド公式(線形応答理論) 微小電場によって生じる微小電流を電場の 1次の範囲で計算する。

電流・電流相関関数の計算

グリーン関数法(KKR法)ではこれを直接計算することができる

(Zn,Cr,Fe)SのDC伝導

アンチフェーズドメイン境界が存在すると大きな電気抵抗を生じる

1.36x10-3 Ωcm

Parallel counling

6.79x10-3 Ωcm

Anti-parallel coupling

H. Akai and W.O. J Phys. D 40 (2007) 1238

FeSe と CrSeの混晶

FeSe+CrSeNiAs型反強磁性体NiAs型反強磁性体

(FeCr)Se₂?

(FeCr)Se₂ ?

質問: (FeCr)Se₂はNiAs型反強磁性体か?

否!反強磁性ハーフメタル

(FeCr)Se₂ NiAs型 反強磁性ハーフメタル

新しいタイプの反強磁性ハーフメタル: (AB)X2 • A, B 遷移金属, X カルコゲン、プニクトゲン,

- A, B は有効d電子数の和が10になるように選ぶ:一方は5より小,他方は5より大
- 例 (FeCr)Se₂
- 結晶構造: NiAs型, 閃亜鉛鉱型, カルコパイライト型, ウルツ鉱型, 岩塩型

反強磁性ハーフメタル

(この場合の反強磁性:特別なフェリ磁性)

- 2種類の磁性イオンがあり
 - 一方は5以上の有効 d電子数, 他方は半分以下の有効d電子数

エネルギーの利得は超交換相互作用(縮退がない状態間の混成)

反強磁性ハーフメタルになる機構

●反強磁性的に結合すると

エネルギーの利得は2重交換相互作用(縮退がある状態間の混成)

NiAs型 (FeCr)Se₂

Real cpp-GMR device

GMR/TMR センサーの模式図

Pin layer is arranged so as to have no magnetization

反強磁性ハーフメタルを用いたGMR/TMR素子

現在使われている構造

通常の構造のGMR素子のMR比

反強磁性ハーフメタルを用いたGMR素子

自由層、スペーサー層に Fe, Cuを用いると

MR比 54%

希薄反強磁性半導体を用いた場合

反強磁性ハーフメタルを用いたTMR デバイス

新しいタイプのGMR素子

- ●外場の撹乱を受けない
 - ●すぐれたMRAM特性
- ●形状磁気異方性が小さい
 - ●電流によるスピン反転が可能
- ●漏れ磁場を作らない

●高集積化

●単一磁性イオンによる強磁性ハーフメタルよりはるかに

まとめ

- ●混晶や合金の電子状態計算を用いて様々な構造材料や機能性物質、それらを用いたデバイス等をデザインすることができる。
- ●これらの電子論的性質の多くはナノスケールからサブミ
 クロンスケールにおいて発現する。
- ●不規則性が本質的に重要な場合がある。
- ●古典的な合金の例、希薄磁性半導体へテロ構造、ハーフメタリック反強磁性半導体、反強磁性ハーフメタルとそれを用いたGMR素子