

*ab initio*計算

• *ab initio* (ラテン語) 初めから from the beginning

• *ab initio*計算 = 第一原理計算

Post-HF法		
• Post-HF法の計算機コスト	方法	Slater 行列 式の数
– 励起配置を加えると途端 に行列式の数が増える。	SCF CISD CISDT CISDTQ	1 2349 50187 558823
 - CISD、MP3、CCSDといった手法では基底関数の数の6乗で計算時間がかかる。 	CCSD (T) CCSDT CCSDTQ MP2 MP3 MP4 MP5 MP6	50187 5558823
	full CI	27944852

Ω

Gaussi	anでの計算
• Input fileの書き	方
[\$RunGauss]	なくてもよい。
[%行]	CHK file等を残したい時
[#行]	手法、基底関数、オプション等
[空行]	[空行]
[タイトル行]	計算の内容等のコメント
[空行]	[空行]
[電荷] [スピン多重度]	[電荷][2S+1]
[座標]	カーテシアン座標とZ-matrix座標
[空行]	最後は空行2つ
[空行]	

Z-matrix \mathcal{O} TIPS G09の新しい記法 0,1 0,1 0,1 Total spin & charge, followed by fragment-specific ones. C(Fragment=1) -3.05015529 -0.24077322 0.00000698 C(Fragment=1) -1.64875545 -0.24070572 0.00067327 C(Fragment=1) -0.94811361 0.97297577 0.00020266 C(Fragment=1) -1.64887160 2.18658975 -0.00093259 C(Fragment=1) -3.05027145 2.18652225 -0.00159819 C(Fragment=1) -3.75091329 0.97284076 -0.00112735 H(Fragment=1) -3.58511088 -1.16744597 0.00036555 H(Fragment=1) -1.11371117 -1.16732692 0.00154256 H(Fragment=1) -1.11391601 3.11326250 -0.00129286 H(Fragment=1) -3.58531573 3.11314346 -0.00246648 H(Fragment=1) -4.82091317 0.97278922 -0.00163655 C(Fragment=2) 0.59188622 0.97304995 0.00093742 C(Fragment=2) 1.29252806 2.18673144 0.00046795 C(Fragment=2) 1.29264421 -0.24056403 0.00207466 C(Fragment=2) 2.69392790 2.18679894 0.00113535 C(Fragment=2) 2.69404405 -0.24049653 0.00274263 C(Fragment=2) 3.39468590 0.97318496 0.00227326 H(Fragment=2) 0.75768862 -1.16723678 0.00243403 H(Fragment=2) 0.75748378 3.11335264 -0.00040118 H(Fragment=2) 3.22888349 3.11347169 0.00077519 H(Fragment=2) 3.22908834 -1.16711773 0.00360969 H(Fragment=2) 4.46468577 0.97323650 0.00278063

41

Gaussianでの言	算
• Output file	
Total atomic charges: 1 1 H .000000 2 H .000000 Sum of Mulliken charges= .00000 Atomic charges with hydrogens summed into heavy atoms: 1	Mullikenの電荷密度
1 H .000000 2 H .000000 Sum of Mulliken charges= .00000 ・・・略 Dipole moment (Debye): X= .0000 Y= .0000 Z= .0000 Tot= .0000 Quadrupole moment (Debye-Ang): XX= -1.8821 YY= -1.8821 ZZ= -1.2412 XY= .0000 XZ= .0000 YZ= .0000 ・・・略	Dipole等

Gaussianでの計算 • Output file •••略 SCF Done: E(RHF) = -1.06610867006 A.U. after 2 cycles エネルギー等 Convg = .0000E+00 -V/T = 1.9155S**2 = .0000 ・・・略 軌道対称性 Alpha occ. eigenvalues -- -.48444 軌道エネルギー Alpha virt. eigenvalues -- .45750 Molecular Orbital Coefficients 1 2 (SGG)--0 (SGU)--V EIGENVALUES -- -.48444 .45750 11 H 1S .57803 .99650 軌道係数 22 H 1S .57803 -.99650

Gaussianでの計算	
• Output file	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Zero-point correction= .024376 (Hartree/Particle) Thermal correction to Energy= .027209 Thermal correction to Enthalpy= .028153 Thermal correction to Gibbs Free Energy= .006638 Sum of electronic and zero-point Energies= -74.941525 Sum of electronic and thermal Energies= -74.938693 Sum of electronic and thermal Enthalpies= -74.937748 Sum of electronic and thermal Free Energies= -74.959263	

Ga	ussia	an 7	うの	言	旨	氧
H,Oの振動解析結果の基底関数と電子相関の依存						
基底関数	エネルギー (H)	結合距離 (Å)	結合角 (*)	ωι	振動数	ω
SCF						
4-31 G	-74.895492	0.966	109.4	3778	1683	3914
6-31 G	-75.972623	0.964	109.8	3808	1677	3950
6-31 G*	-75.998968	0.956	103.9	3959	1798	4064
6-31 G**	-76.015308	0.949	104.6	4080	1753	4185
cc-nVD7	- 76 027389	0.946	104.5	4112	1775	4209
cc-pVTZ	- 76.058329	0.941	106.0	4127	1753	4229
cc-pV0Z	- 76.065664	0.940	106.2	4131	1751	4230
ee pride	10.00004	0.010				
CASSCF						
4-31 G	-74.951901	0.997	104.7	3356	1627	3500
6-31 G	-75.028743	0.994	105.2	3385	1625	3533
6-31 G*	-75.053453	0.981	101.1	35/1	1/40	3094
6-31 G**	-76.067331	0.973	101.5	3698	1698	3815
cc-pVDZ	-76.079103	0.970	101.6	3738	1716	3848
cc-pVTZ	-76.109802	0.963	103.1	3769	1701	3883
cc-pVQZ	-76.117359	0.961	103.4	3779	1699	3892
CCED(T)			'			
CCSD(1)	76 241205	0.066	101.9	3822	1690	3927
cc-pvDZ	- 76.241303	0.900	103.6	38.12	1668	3945
cc-pv12	- 76.332217	0.959	104 1	38.15	1659	3951
CC-PVQ2	- 10.339198	9.330	1.74.1	5045	1000	
実満値		0.9572	104.5	3832	1649	3943
C.S.		0.9578				

CISDCCSDMP2\$RunGauss #P CISD/STO-3G pop=full H20 CISD\$RunGauss #P CCSD/STO-3G pop=full H20 CCSD\$RunGauss #P MP2/STO-3G pop=full H20 MP2
\$RunGauss \$RunGauss #P CISD/STO-3G pop=full #P CCSD/STO-3G pop=full H20 CISD H20 CCSD
H20 CISD H20 CCSD H20 MP2
0 1 0 1 0 1 01 01 01 H1 1 0.9895 H1 1 0.9895 H1 1 0.9895 H2 1 0.9895 2 100.0396 H2 1 0.9895 2 100.0396 H1 1 0.9895

HF SCF D	Done: E(RHF) = -74.9659011886 A.U. after 7 cycles
CISD DE(CI)=53563631E-01 E(CI)=75019464820E+02
CCSD DE(CO	DRR)=54318604E-01 E(CORR)= <mark>75020219793E+02</mark>
MP2 E2 =	3886216147E-01 EUMP2 =75004763350102E+02

エネルギー勾配法 $\frac{\partial E\left(\vec{R}\right)}{\partial R_{*}} = \frac{\partial}{\partial R_{*}} \left\{ E\left(\vec{R}_{A}\right) + \sum_{i=1}^{3N} G_{i}^{A}\left(R_{i} - R_{i}^{A}\right) + \frac{1}{2} \sum_{i=1}^{3N} \sum_{j=1}^{3N} H_{i}^{A}\left(R_{i} - R_{i}^{A}\right)\left(R_{j} - R_{j}^{A}\right) \right\}$ $= \frac{\partial E\left(\vec{R}_{A}\right)}{\partial R_{k}} + \sum_{i=1}^{2N} G_{A}^{A} \frac{\partial R_{i}}{\partial R_{k}} + \frac{1}{2} \sum_{i=1}^{3N} \sum_{j=1}^{3N} H_{ij}^{A} \frac{\partial R_{j}}{\partial R_{k}} \left(R_{j} - R_{j}^{A}\right) + \frac{1}{2} \sum_{i=1}^{3N} \sum_{j=1}^{3N} H_{ij}^{A} \left(R_{i} - R_{j}^{A}\right) \frac{\partial R_{j}}{\partial R_{k}}$ $=\sum_{i=1}^{3N}G_{i}^{A}\delta_{ik}+\frac{1}{2}\sum_{i=1}^{3N}\sum_{j=1}^{3N}H_{ij}^{A}\delta_{ik}\left(R_{j}-R_{j}^{A}\right)+\frac{1}{2}\sum_{i=1}^{3N}\sum_{j=1}^{3N}H_{ij}^{A}\left(R_{i}-R_{i}^{A}\right)\delta_{jk}$ $= G_{k}^{A} + \frac{1}{2} \sum_{i}^{3N} H_{ki}^{A} \left(R_{j} - R_{j}^{A} \right) + \frac{1}{2} \sum_{i}^{3N} H_{ik}^{A} \left(R_{i} - R_{i}^{A} \right)$ $= G_{k}^{A} + \frac{1}{2} \sum_{i=1}^{3N} H_{ki}^{A} \left(R_{i} - R_{i}^{A} \right) + \frac{1}{2} \sum_{i=1}^{3N} H_{ik}^{A} \left(R_{i} - R_{i}^{A} \right)$ $=G_{k}^{\mathrm{A}}+\sum_{i=1}^{3N}H_{k}^{\mathrm{A}}\left(R_{i}-R_{i}^{\mathrm{A}}\right)$ $\Rightarrow \frac{\partial E\left(\vec{R}\right)}{\partial R_{i}} = G_{i}^{A} + \sum_{i=1}^{3N} H_{ij}^{A} \left(R_{j} - R_{j}^{A}\right)$

エネルギー勾配法 ポテンシャルエネルギー面上の谷底や峠は定常点(極小点・極大点) ある構造Ra:での近くの構造R ののエネルギーをRaまわりで2次までTaylor展開 $E\left(\vec{R}\right) = E\left(\vec{R}_{A}\right) + \sum_{i=1}^{3N} \left(\frac{\partial E}{\partial R_{i}}\right)_{a} \left(R_{i} - R_{i}^{A}\right) + \frac{1}{2} \sum_{i=1}^{3N} \sum_{j=1}^{3N} \left(\frac{\partial^{2} E}{\partial R_{i} \partial R_{i}}\right)_{a} \left(R_{i} - R_{i}^{A}\right) \left(R_{j} - R_{j}^{A}\right)$ $= E(\vec{R}_{A}) + \sum_{i=1}^{3N} G_{i}^{A}(R_{i} - R_{i}^{A}) + \frac{1}{2} \sum_{i=1}^{3N} \sum_{j=1}^{3N} H_{ij}^{A}(R_{i} - R_{i}^{A})(R_{j} - R_{j}^{A})$ $G_i^{\mathbf{A}} = \left(\frac{\partial E}{\partial R_i}\right)_{\mathbf{F}} \rightarrow \mathscr{I} \overline{?} \mathscr{I} \times \succ \vdash (勾配)$ $H_{ij}^{A} = \left(\frac{\partial^{2} E}{\partial R_{i} \partial R_{j}}\right)_{\bullet} \rightarrow \wedge \hat{v} \mathcal{T} \mathcal{V}(\hat{n} \sigma)$ 定数) この式の両辺を尿水で偏微分すると、

ユーティリティプログラム

- chkchk:ルートとタイトルを表示
- cubegen: cubeファイルを作成するプロ グラム
- formchk: checkpointファイルをアスキー ファイルにする
- unfchk: f c h k ファイルを c h k ファ イルに変換する

計算手法

- Functional PBE0
- Charge:Spin (2, T),(3,D),(4,S)
- Basis set Rh Lanl2dz
- N 6-311G
- S,C,N 6-31+G*
- H 6-31G
- Mulliken population analysis

81

錯体	錯体の価数変化				
	Ш	Ш	IV		
Rh	-0.049	-0.059	-0.074		
Ni	0.721	0.437	0.098		
sum(S)	0.352	1.042	1.728		
sum(C1st)	-1.15	-1.378	-1.634		
sum(C2nd)	-5.43	-5.254	-5.104		
sum(C3rd)	-1.696	-1.686	-1.671		
Ν	-5.866	-5.916	-5.872		
Ni+sum(S)	1.073	1.479	1.826		
寺の変化は、価数の変化 こ変化している。その先 まり大きくなくN原子とI	とともにN の炭素原 Rh原子では	Ni原子と Fでも電荷 は、ほぼ家	記位したS 荷の揺らる 変化はない		

- 「...ここに、分子構造、分子定数の測定装置があると想像していただきたい。(略)この装置を用いれば、Re、Be、結合角がほぼ1~5%の精度で求められる。(略)試料を入手する費用が不要で、精製の必要もない。再現性が初めから保証されている。急激な反応による爆発等の危険が皆無である...」(藤永茂)
- 「コンピューターはよい化学者」西村 肇、山口 兆、吉田元二 (東京化学同人)
- [Computers do not solve problems, people do.] (E. R. Davidson)

130

参考文献

- 「新しい量子化学」A.ザボ、N.S. オストランド
- 「分子理論の展開」永瀬茂、平尾公彦
- 「平尾先生の大学院講義 量子化学」化学での連載
- 「物性量子化学入門」山口兆