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Paradigm of Science
HESNBBEX

Inductive Eniy Deductive ##n

4 N\ )

Theory

Newton's law of universal gravitation
and law of motion

Tycho Brahe
1546-1601

Johannes Kepler
1571-1630

Observations — Laws
Galileo Galilei . -
?‘52‘:1 6126 Isaac Newton — Princi p les
Telescope [1609] 1642-1727 N App[ica tions

https://en.wikipedia.org/wiki/



The 5th Solvay Conference 1927.10
“Electrons and photons”
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“Most of Physics and

all of Chemistry are solved.”
Paul Dirac 1902-1984




“You can not understand it,

until you know how to calculate it.”
J. C. Slater 1900-1976




Growing Power of Supercomputer

Peak Performance (FLOPS)
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Cray-1

® First Supercomputer in the World
= |Installed in Los Alamos National Lab in 1976

= Peak Performance:100MFLOPS
= Main Memory: 8MB

Sevmour Cra e S G LB
y y Los Alamos National Laboratory
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Paradigm of Science

Inductive Deductive

Theory

Computation
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The Nobel Prize in Chemistry
1998

Walter Kohn John A. Pople

The Nobel Prize in Chemistry 1998 was divided equally
between Walter Kohn "for his development of the density-
functional theory"” and John A. Pople "for his development
of computational methods in quantum chemistry".
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Current Issues in Materials Science and Engineering

* Complexity in Materials

- Multi-scale, multi-physics, hierarchal structures in time
and space, leading to the importance of top-down and
bottom-up connections in many contexts

- Strong requirements not only to get high performance for
cost and efficiency with sustainability for environment and
energy problems, and but also to accelerate R&D

v/ We are confronted with limitations in the accuracy and
efficiency of traditional research strategies such as
experimental, theoretical, and computational approaches.

v/ Importance of “Data-Intensive Scientific Discovery” as the
fourth paradigm of science has been rapidly rising quite
recently in materials science & engineering, as called

% MATERIALS INFORMATICS
16



Che New ork Times

SCIENCE

A Deluge of Data Shapes a New Era in Computing

DEC. 14, 2009 In a speech given just a few weeks before he was lost at sea off the
California coast in January 2007, Jim Gray, a database software
pioneer and a Microsoft researcher, sketched out an argument that
computing was fundamentally transforming the practice of science.

Dr. Gray called the shift a “fourth paradigm.” The first three
paradigms were experimental, theoretical and, more recently,

computational science. He explained this paradigm as an evolving era

in which an “exaflood” of observational data was threatening to
overwhelm scientists. The only way to cope with it, he argued, was a
new generation of scientific computing tools to manage, visualize and
analyze the data flood.

Now, as a testimony to his passion and vision, colleagues at

Microsoft Research, the company’s laboratory that is focused on
science and computer science, have published a tribute to Dr. Gray’s
perspective in “The Fourth Paradigm: Data-Intensive Scientific
Discovery.” It is a collection of essays written by Microsoft’s

scientists and outside scientists, some of whose research is being
financed by the software publisher.



Paradigm of Science

Inductive Deductive

-

Theory

Computation

AN
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"The Fourth Paradigm: Data-Intensive Scientific Discovery”

in Materials Science
MATERIALS INFORMATICS
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Materials Science & Engineering

TARGET

—> Design

Materials Informatics

i)

Data Science

Characterization @ 27 Fabrication

Measurement Informatics Process Informatics
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Materials Genome Initiative

https://www.mgi.gov

the WHITE HOUSE PRESIDENT BARACK OBAMA Contact Us »

BRIEFING ROOM ISSUES THE ADMINISTRATION PARTICIPATE 1600 PENN

Home * About the Materials Genome Initiative

‘v‘l‘h”

nﬁ} Materials Genome Initiative

Goals | Examples | News & Announcements | Federal Programs | External Stakeholder Activities | Contact Us

3 - -
lo help businesses discover, develop, and
deploy new materials twice as fast, we're
launching what we call the Materials
Genome Initiative. The invention of
silicon circuits and lithium-ion batteries
made computers and iPods and iPads
l)()\\llil(’ but it took years to get thosec
technologies from the drawing board to the

marketplace. We can do it faster.

https://www.whitehouse.gov/magi




Materials Informatics

What can we provide ?

BIG DATA

Materials Science Data Science

N B

What can we get ?

21



Materials Research

Fabrication REALIZATION Characterization

Materials > Properties
Composition Functions
Xi Pi
(x6,Ps) (x1,P1) (x2,P2) (x3,P3)
X ,P (X5,P5)
(x7,P7) (xt0,P10) (xa,P2)
(xs,Ps) (x9,P9) (x11,P11) (x12,P12)
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Materials Research

Fabrication REALIZATION Characterization
Direct Problem

Materials > Properties
Composition - Functions
Inverse Problem
DESIGN
Xi Pi

Data Science

{xi,Pi} > P(x) > x=P'(P)

Discovery of Correlation




Big Data

It’s estimated that

2.5 QUINTILLION BYTES

2.3 TRILLION GISABYTES
of data are created each day

Yi‘ o

T

JJ.

40 ZETTABYTES

[ 43 TRILLION GIGABYTES |

of data will be created by
2020, an increase of 300
times from 2005

6 BILLION
D PEOPLE
have cell
phones

The
FOURV’s
of Big
Data

Most companies in the
U.S. have at least

100 TERABYTES
[ 100,008 GIGABYTES
of data stered

WORLD POPULATION: 7 BILLION
aak g ird Volume
Velocity, Variety and Veracity

Maodern cars have close to
100 SENSORS

. ( @7“ that monitor items such as

fuel level and tire pressure

The New York Stock Exchange
captures

1TB OF TRADE
INFORMATION

during each trading session

Velocity

ANALYSIS OF
STREAMING DATA

4.4 MILLION IT JOBS

iahye iﬂ:?" l.:e is projected Q Q g
18.9 BILLION (-
NETWORK

connecTions YYYY = -

~ almost 2.5 connections
per person on earth

iiffiiiiiii

Sowrces: McKinsey Gluba Institute, lwmer Cisco, Gaﬂru EMC, SAS, 18M, MEPTEC, GAS

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

As of 2011, the global size of
data in healthcare was
estimated to be

150 EXABYTES

| 161 BALLION GIGABYTES

By 2014, it's anticipated
there will be

420 MILLION
WEARABLE, WIRELESS
HEALTH MONITORS

4 BILLION+
HOURS OF VIDED

are watched on
YouTube each month

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

30 BILLION
PIECES OF CONTENT

are shared on Facebook
every month

Poor data quality costs the US
economy around

TRILLION A YEAR

don't trust the information

they use to make decisions .
\ JF 1
Lo Veracity
4 UNCERTAINTY
i OF DATA
in one survey wee unsure of
how much of their data was
inaccurate
T2
b= - L

S



Materials Database

e MatNavi http://mits.nims.go.jp

- AtomWork: inorganic material DB Free AV, W/
> Structure: 82,000, Property: 55,000, Phase diagram: 15,000

% AtomWork-Adv Fee-Based
> Structure: 273,830, Property: 298,021, Phase diagram: 40,301

Limited number of data for particular purpose !

25



Computational Materials Design with Machine Learning

Data Generation Data Collection Data Mining

First-principles
Calculation for
Known Materials

Materials

Property
Exploration

Database

26



Computational Materials Database

T st 3 methods, the Materials Project proy S Op )SS
I . computed information on known and predict naterials as well as powerfu

Materia IS analysis tools to inspire and design novel materials
Project eammore | o

OQMD:

The Open Quantum Materials Database http://ogmd.org

https://materialsproject.org

The NOMAD Laboratory

A European Centre of Excellence https://nomad-coe.eu

http://aflowlib.org

Lo g W e
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\

Automatic - FLOW for Materials Discovery
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Role of First-Principles Calculation

Most of material properties are governed by the electronic states
described by the quantum theory.

For concrete materials, many of properties can be predicted
from first principles, offering another route to solve the direct
problem.

Direct Problem

_——  Fundamental  ——_ Properties

Rules

Materials Functions

Electron theory may provide new axes x (descriptors) that P
spans.

First-principles calculations can give some valuable pieces of
information at less cost, even for non-existing and unstable
materials. 28



Direct and Virtual Screening

.
Direct Screening _
Direct Problem

| — Exll:OF?"(i:"a‘fc“ts s Properties
Materials Functions

Small Search Space

\.

-

Virtual Screenin '
J Direct Problem IF:rope.rt €5
_——  Experiments  ——_ unctions
FP Calc.
Ny
) o
Materials Vo training set

Tapy;
% Modeling
\ /

Virtual Direct Problem

29



Machine Learning

* Modeling by Statistical Procedure and Evaluation

Modeling

Database

v

= Descriptors/Features
g

30



Machine Learning and Deep Learning

Machine Learning

& — & — 737 — il

Input Feature extraction Classification Output

Deep Learning

& — 3377 - I

Input Feature extraction + Classification Output

https://www.xenonstack.com/blog/log-analytics-with-deep-learning-and-machine-learning 3 1
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Descriptor for Structural Stability in Binary Compounds

 Empirical 2D descriptors by van Vechten and Phillips

25

m Rock Salt
¢ Zinc Blende/Wurtzite

J.A. van Vechten, PR (1969).
J.C. Phillips, RMP (1970).

e Atomic number: not a good descriptor

50:_‘m&>% \% Q“

L.M. Ghiringhelli et al. PRL (2015).

40F
N 30F

20

LN

10 20 30 40 50 33




Conditions of Good Descriptor

A descriptor di uniquely characterizes the material i as well as
property-relevant elementary processes.

Materials that are very different (similar) should be characterized
by very different (similar) descriptor values.

The determination of the descriptor must not involve
calculations as intensive as those needed for the evaluation of
the property to be predicted.

The dimension of the descriptor should be as low as possible
(for a certain accuracy request).

L.M. Ghiringhelli et al. PRL (2015).

SHBAZ ¥ (explanatory variable) . & (feature)



Sparse Modeling by LASSO and Exhaustive Search

* Best Descriptors

highest occupied lowest unoccupied AE'AB — E(ABRS) - E(
KS level of B KS level of B
IP(B) — EA(B) 0.25f
rp(A)? <
= 02
|TS(A) o TP(B)| %0‘15_
exp(rs(A)) LI
2 o
| !
|TP(B) —Ts (B)| E 0.05:
exp(rq(A)) = |
density maximum

radius of A-d orbital

IP(B) - EA(B)|/ry(A)* [V A~

L.M. Ghiringhelli et al. PRL (2015).



First-Principles Calculations

AmBhn...X

ORIKEN

- Elements & Composition
s
Structure
N

 First-Principles Calculations
N
Property

36



Computational Materials Design with Machine Learning

Data Generation Data Collection Data Mining

First-principles
Calculation for
Known Materials

Property Materials
Database Exploration

First-principles
Calculation
Verification

Structure Search

for Unknown
Materials

37



Crystal Structure Search for
Materials Discovery and Design



Acc. Chem. Res. 1994, 27, 309—314

Are Crystal Structures Predictable?

ANGELO GAVEZZOTTI"

Dipartimento di Chimica Fisica ed Elettrochimica, Universita di Milano, Milano, Italy

Received May 16, 1994

“No”: by just writing down this concise statement,
in what would be the first one-word paper in the
chemical literature, one could safely summarize the
present state of affairs, earn an honorarium from the
American Chemical Society, and do a reasonably good
service to his or her own reputation. In the main-
stream of academic tradition, one could then concede
a “maybe”, or even a conditional “yes”, thus making a
good point for discussion; and then, in the mainstream
of publication policy tradition, proceed eventually to
have his or her papers rejected by referees taking the
opposite stand.
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Crystal structure prediction

First-Principles
Calculations

® First-principles calculations provide a powerful tool to predict

properties for realistic materials with the information of crystal

structure.

® Therefore, crystal structure prediction is indispensable for materials

discovery without prior knowledge on structure.

/ Elements
Composition

Size and shape of unit-cell

000
00

Atomic positions

~

 Properties

40



Issues in crystal structure prediction

* Huge Structure Space

1. How to search the structure space globally

- Local optimization by first-principles calculations or
classical MD simulations

2. How to represent structure space (descriptor)

- Easy and efficient representation of structure vector

Energy

Structure vector
41



1. Global structure search

Difficult due to many local minima

¢ Many computationally demanding structure optimization
processes are required.

Energy

Development of an efficient global search algorithm is
highly desired.

42



Structure search algorithm

® Random search algorithm

v/ Random selection of lattice parameters and atomic positions

® Evolution-type algorithm

v/ Evolutionary algorithm (USPEX)
v/ Particle swarm optimization (CALYPSO)

® Learning-type algorithm
v/ Bayesian optimization
- A sequential design strategy for global optimization of

black-box functions that doesn't require derivatives.
[Wikipedia]

* The target functions may not be analytic nor continuous.

43


https://en.wikipedia.org/wiki/Optimization

Key features for structure prediction

Exploration
® to search the structure space as globally as
possible

Exploitation
® to search the structure space without missing
important minima

ENERGY

44



tion (BO)

imiza

Bayesian opt

|||||||||||||||||||||||||||||||

interval

ce

Calculated data

Prediction
95% confiden

True function

Descriptor

BO enables to balance trade-off between
exploration and exploitation of the search algorithm.

45



2. Descriptor for crystal structure

Fingerprint: based on radial distribution function

A. R. Oganov and M. Valle, J. Chem. Phys. 130, 104504 (2009).

v ~— S5(R =R.. _
Fup(R) = Z Z‘ ( z]) 1 Fa5(0) 1

NN _
Aj,cell Bj 47TRi2j%A Fyg(0) =0

> j-th atom of type A within the unit cell
> j-th atom of type B within the distance R.x (~5 A)
> discretized over bins of width A (50 discretized R points)

60 Fingerprint of ID 61 (Init. w/o std.)

50

40

Example of Y,Co047 .

20

Y-Y, Y-Co, Co-Co ‘ G

0

-10
50 ] 50 3y 50 0 20 40 60 80 100 120 140 160

150 dimensional vector

46



Flowchart of Bayesian optimization

Generate structures
Calculate descriptors
Randomly pick up structures

Structure optimization

Recalculate descriptor

Bayesian optimization
Pick up next structures

ID  Descriptor

= O ~NOOULL B WNPEFEO

o

494
495
496
497
498
499

Opt

Opt

Opt

Opt

rttt 1

Tt

Energy




Lattice constants

a Triclinic )
a<b<c
90°— 0 < a, B,y < 90° (Typel)
90° < a, B,y <90°+ 60 (Type?2) D
a Monoclinic )
a<c
a=y =90°
. 90°< B <90°+6 )
4 )
Orthorhombic
a<b<c
a=p=y=90°
\ J
4 )
Tetragonal
a=b+c
a=pf=y=90°
\ J

a Rhombohedral )
a=b=c
a=p=y
. 90°—6<a<90°+6
a Hexagonal )
a=>b+#c
a=p=90°
\ Y = 120° J
a )
Cubic
a=b=c
a = ﬁ =y = 9(0°
g J

Constraints

Min. length
Max.length
6 =20°

48



Code development

PY https://github.com/Tomoki-YAMASHITA/CrySPY
CryS distributed under the MIT License

Space group by find_wy

o Algorlthm H. Kino, https://github.com/nims-hrkn/find_wy
Y Random search Bayesian optimization library, COMBO
. . . T. Ueno et al., Materials Discovery 4, 18 (2016).
‘/ BayeSIan optlmlzatlon https://github.com/tsudalab/combo
v/ Evolutionary algorithm
v LAQA: Look Ahead based on Quadratic Approximation

A fine-grained method to reduce local optimization steps

e Local optimization
Interfaced with
v VASP
Quantum Espresso
soiap
LAMMPS

SNENER

49



Test simulations

® Both random search and Bayesian optimization are
applied to two known systems

» NasCls (16 atoms/cell)

Rocksalt structure

» Y,Co47 (19 atoms/cell)

ThyZn,;-type structure (R-3m)
Ferromagnetic

50



Test simulation: NasCls

Random search |

0 100 200 300 400 500 600 700 800
Number of trials

Success rate: 23/800

Bayesian optimization

Same data
e 800 structures
e 23 good candidates

10 20 30 40 50
Number of trials

Selection: every 10 trials

51



Test simulation: NasCls

To investigate the statistical efficiency,

200 BO simulations were carried out.
80

—o— Random
B BO

0 50 100 150 200
Number of trials

Frequency distribution of number of trials required to find the rocksalt structure

% BO reduces trials by 31% compared with RS.

52



Energy (eV/cell)

Test simulation: NasCls

800 structure data ® : 23 good candidates

30 -

I JEX
25| e |nit. A

4% A —~ A O
20 T
15 f‘ A
10 A LA ®
U

5 ot |
0 -----------------------------

100 150 200 250 300
Euclidean distance

Learned correlation between
energy and structure distance

One of the good candidates in the global-minimum valley
is selected within 70 trials, so BO works well in the

exploitation phase. -



Test simulation: Y2Co17

ThyZn,;-type structure (R-3m)

[Conventional] [Primitive]
Hexagonal Rhombohedral

19 atoms/cell

a4



Test simulation: Y2Co17

Random search

. : 200 BO simulations
Collinear magnetic order

[
[
[
90
o® ‘ ’“ | 80 —o— Random
% ..‘f I 2 BN BO
P B
Cg0 | _ 60
80 J* 3
| 550
-
| 03'40
| L 30
20
| 10
)
200 400 600 800 1000 0 50 100 150 200 250 300 350 400
Number of trials Number of trials

I
I
Success rate: 4/1000 | Selection: every 20 trials
I
I

% BO reduces trials by 39% compared with RS.
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Test simulation: Y2Co17

1000 structure data ® : 4 good candidates

0 50 100 150 200 250
Euclidean distance

Learned correlation between
energy and structure distance

It’s quite difficult to search for the global minimum,
but BO works well in the exploration phase.

56



Summary

¢ A tool for crystal structure search
> Random search

> Bayesian optimization (BO)

& Test simulations for NasCls and Y2Co17

> Bayesian optimization is highly efficient and
significantly reduce the number of searching
trials required to find the global minimum

structure.

Phys. Rev. Materials 2, 013803 (2018).
Phys. Rev. Materials 4, 033801 (2020).
Sci. Technol. Adv. Mater.: Methods 1, 87 (2021).
Sci. Technol. Adv. Mater.: Methods 2, 67 (2022).
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Crystal Structure Map
for Materials Classification and Modeling



Current Hot Issue in Materials Research

« Materials Discovery Assisted by Data Science Approach

v' Today, a wealth of materials data are being accumulated,
experimentally and computationally.

v Where and how is each existing materials system placed
for design and discovery ?

“Materials Map”
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Leaflet | Data © OpenStreetMap contributors, Maps © Thunderforest contributors, CC-BY-SA, Imagery ©

Q: How to define such a low-dimensional axis system

and the coordinate of materials targets ?

il _X: longitude
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Structure as Axes of the Map

 Most fundamental attribute in condensed matter systems,
especially crystalline materials

« Governing the electronic states as
under the Born-Oppenheimer approximation.

Helectron — Helectron [{Rn}]

* Our understanding of materials properties is often based on
the correlation with structure.

Crystal Structure Map

v' Coordinates classify huge related types of structures.
v" Axes provide structure features for modeling properties.

61



Crystal Structure DB

Hamessing the power of supercomputing and state of the art electronic
structure methods, the Materials Project provides open web-based access to

computed information on known and predicted materials as well as powerful

M ateri a Is analysis tools to inspire and design novel materials.
PrOj eCt . Tutorials et teing

C Oo Crystallography Open Database — N

LiCoO, mp-22526

COD Home Electronic Structure X-Ray Diffraction X-Ray Absorption Substrates Similar Structures Synthesis Descriptions
H Search results Calculation Summary Provenance/Citation
W('L];e's new? b Material Details Lattice Parameters
Result: there are 60 entries in the selection Final Magnetic Moment ) 4998A (o) 33.082
Accessing COD Data 3.995 pg b) 4993A () 33.082°
Switch to the old layout of the page o) 4993A () 33.082°
Browse Magnetic Ordering
folume | 33.003 A3
Search Download all results as: list of COD numbers | list of CIF URLs | data in CSV format | archi [ Yolume] 33,003
Search by structural , Final Struct —
Formation Enet Atom &CIF~
formula Searching elements including Ba, Ti, O number of elements between 1 and 3 1503 eV i Fotonel Goordiates | Tl
Add Your Data 4 4 First | 4 Previous 20 | 1 of 3| Next 20 » | Last b | Display 5 20 50 100 200 3( Energy Above Hull / Atom Li
0.193 eV
Deposit your data . - . ) : e a b 5
Manage depositions CODID 4 Links FormulaA Spacegroupa Cell par s Cell v A ey , , ,
Manage/release 1507755 CIF Ba2 013 Cl2/m1 15.004; 3.953; 533.582 4.92 g/cm3
prepublications Ti6 9.085 c
90; 98.01; 90 Decomposes To 0
LiCoO,
e Band Gap 05 05 05
COD Wiki 1507756 CIE BaO3Ti P4mm 3.9999;3.9999;  64.269 romn = 0.665 &V
Obtaining COD 4.017 e u @l Unit Cell Polyhedra
Querying COD 90 90; 90 Space Group (0]
Citing COD Zoom infout  Shift + Drag cursor _ - - -
COD Mirrors Rotate along the center axis ~ Option + Drag cursor HornannMauguin
A 1507757 CIF BaO3Ti Pm-3m 4.0073;4.0073; 64.351 R3m [166] @ 02396 02396  0.2396
Advice to donators - E—— 4.0073
Useful links gy Hall 07604 07604 07604
90; 90; 90 ——— e -R32"
Tags: | Lithium iron(lll) oxide | | High pressure experimental phase | | Lithium cobalt oxide EOim Qo
Lithium cobalt(lll) oxide | | Lithium cobalt oxide (1/1/2) | | Lithium cobalt dioxide 3m
Lithium cobalt(ll dioxide | [ Lithium cobaltate(ill)
Crystal System

I F R trigonal
5
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What’s CIF ?

* Crystallographic Information Framework

- Established by International Union of Crystallography
(IUCr) — Dictionary: CoreCIF

* Widely used in structure database such as COD, ICSD,
Materials Project, MatNavi, etc.

- Containing all information about crystal structure
necessary for electronic structure calculations

» Conversion apps from CIF to VASP, QE, etc.:
cif2cell*, C-Tools?, cifconv#

*: T. Bjorkman, Comput. Phys. Commun., 182, 1183 (2011).
$: https://sourceforge.net/projects/c-tools/
#: F. lzumi and K. Miyazaki, Ceramics 54, 473 (2019).

de facto standard for crystal structure format

in experiment and theory/computation o



Procedure of Structure Classification for a Set of CIFs

« Step 1: To represent a (often highly dimensional) vector as
structure feature

v' Simple, tractable, objective, and translationally and rotationally
invariant enough to apply to general structures

« Step 2: To define distance between feature vectors for
measuring similarity
v' Degree of similarity .g/.
« d@) < dy, : equivalent within a given threshold T —a
« d@)~dy, : close to equivalent but minor dissimilarity
« d(1.2) < d(1.3) means that d('2) is closer in similarity than d(1.3),
« Step 3: To map the position of each structure in a low-

dimensional space so that the distances calculated from it
well approximate the original ones

» Classification (clustering) of crystal structures for further
analysis



Step 1: Feature Vector for Crystal Structure

v' Coordination Number (CN)

simple feature of local structure around each atomic site
no unique definition of neighbors in general structures
v' Cluster Expansion

useful for considering different configurations like alloy

ordering
v' Radial Distribution Function (RDF) N
complete pair-wise information . 7" fi“w v\/\v A

very simple
measurable in EXAFS

wave number (A D)
Fourier Transformation

RDF
INN [ | 2NN

fluorescent x-ray strength

F.T.{K2x(K) Y[a.u.]

0 2 4 6 8 10
atomic distance (A)

http://titan.nusr.nagoya-u.ac.jp/Tabuchi/BL5S1/lib/exe/
fetch.php?media=tabuchi:gairon-20181210-v2.pdf



F-Fingerprint

Oganov and Valle, J. Chem. Phys. 130, 104504 (2009)

 For AB element pair in a compound

v

Fap(R) = ATR2N AN

FAB(O) = —1, FAB(OO

)=0 (pair correlation)

> Y 6(R—Rij)—1=gap(R) -1

A;,cell B;

RDF

A; : i-th site of element 4

R;; : distance between 4; and B,
N, : number of sites of A in cell
V : volume of cell

d : smoothened with Gaussian

Discretizing F 3(R)) I=1,

~ -

This “-1” makes
fingerprint short-ranged
and components
distributed around zero.

.., m

FP parameters
RMAX : R,,

A:R;,— R,

o?: Gaussian variance

m-D vector for element-pair AB

~ -

n(=pm)-D vector for p pairs

2

-2

HCP

| /\/\/\/\A/\AA

FCC

|

| 4 |

AL A

|

/\/\/\/\N\ /\/\/\/\/\_

BCC

J\/V VI

0 4

o~ 0.2A
A~0.1A

8 12
RADIAL(A)

16

20
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Step 2: Distance as a Measure of Similarity

 Distance between two n-D vectors Xand Y
1. Euclidean distance (ED)

1/2

Minkowski distance
n

> (X —Yy)?

1=1

1/p

dX,Y) =

d(X,Y) = [Z | X; — Y|P
1=1

2. Pearson correlation coefficient (PCC)
Z?:1(Xz‘ — X)(YZ _ }7)
(S0 (Xi = X)2 0, (v - 7)2) 2

—1<r<1

- Cosine distance (CD) When X and Y are normalized

L = 2(1 - =4 cosine
dcosine — 5(1 - 7“) 0 < deosine < 1 d ( /r) d

r(X,Y) =

https://en.wikipedia.org/wiki/Cosine_similarity



Step 3: Mapping Structure

W. S. Torgerson, Psychometrika 17, 401 (1952)

* Multidimensional Scaling

v For a given pair-wise (Euclidean/non-Euclidean) distance
matrix D of N points, we seek N-point coordinates X in a
low (k < n) dimensional space so that pair-wise Euclidean
distance matrix DX calculated using X is the closest
approximation to D.

v Often called “Dimension Reduction” for data mapping

v Equivalent to “Principal Component Analysis (PCA)” for
Euclidean distance

v Implemented in MATLAB, R, Scikit-learn, ...



Multidimensional Scaling (MDS)

W. S. Torgerson, Psychometrika 17, 401 (1952)

* Algorithm — squared distance
1 1 :
1. B=XX" = —§JD(2)J, J=1- NuT < double centering
2. B=QAQ" eigenvalue decomposition I : identity matrix

1/2 1 : identity vector
3. X, =Q.AY? first k positive-eigenvalue part only x : (vxq)

(Nxk) d-D coordinates

k < d: dimension reduction centered

&
1
1
i
i

What dimensionality k one should choose?

The larger eigenvalues, the more important coordinates,
because the sum of the eigenvalues in A, should
approximate the sum of all eigenvalues in A, so that small
negative eigenvalues cancel out small positive eigenvalues.

R. Sibson, J. R. Statist. Soc. B 41, 217 (1979)

1/2 1/2
B~ B, =X, X! =(Q:AY*)(QuAY?)T 69



MDS Example: Kansai-Area Prefecture Center Distance

Hyogo Wakayama  Osaka Nara Shiga Kyoto
Hyogo 0 134 85 116 118 60
Wakayama 134 0 68 66 145 141
Osaka 85 68 0 32 83 75
Nara 116 66 32 0 79 95
Shiga 118 145 83 79 0 63
Kyoto 60 141 75 95 63 0
100r KANSAI CONFISURATION
16000 _ | g “\/ﬂ X, =Q, A2
14000 A;; —[k=2] — s y
12000 5
10000 ¥
E 8000/ |
% 6000 almost zero eigenvalues for k > 2
M 4000" because of Euclidean distances
2000 - calculated using 2D positions
0 — > 100
L
1 2 3 | 411 | é | é | 7

2000t
0



MDS and Principal Component Analysis (PCA)

 New coordinates are span in the axes given as eigenvectors of
principal component on original n-D space

B=XX"=QAQ" ~ QA QT =X XT X =X-1X
(Nxd)(dxN)  (NxN) (NxN) (Nxk) (kxN) centered

XX"Qy = Q:ALQIQ =Q A,
(NxN) (Nxk) (NxK)

PCA: S = X'X : covariance

NSNS - )
XTX(X"Q) = (XTQu)Ay 7 [u"Su+ A1 —-u"u)] =0
(dxd)  (dxk) (dxk)  TTTeeal u variance

"=~ Su=uA

uy = X7Q A% = XTX, A7 =XTX,A7' : d-D eigenvectors of PC
(dxk) Y, =Yu, :projection on the PC space

Z=7.u!  :inverse projection

C. M. Bishop, Pattern Recognition and Machine Learning (Springer-Verlag, New York, 2006)



*

Generation of Structure with CIF

findsym*

'useKeyWords
'title

Fe,Co, Alloy

Fed4Co4 alloy
'atomicPositionTolerance
0.00001
'latticeParameters

5.72 5.72 5.72 90.0 90.0
90.0

'unitCellCentering

I

latomCount

8

latomType

4*Fe 4*Co < §C4=70

'atomPosition
0.00 0.00 0.00
0.25 0.25 -0.25
0.25 -0.25 0.25
-0.25 0.25 0.25
0.25 0.25 0.25
0.00 0.50 0.00
0.00 0.00 0.50
0.50 0.00 0.00

: H. T. Stokes, D. M. Hatch, and B. J. Campbell, ISOTROPY Software Suite, iso.byu.edu.
H.T.

atls

2 Fe 4 Co 4

< >

.....

4*Co

Co Fe 3*Co

2*Co Fe 2*Co
3*Co Fe Co

4*Co Fe

Co 2*Fe 3*Co

Co Fe Co Fe 2*Co
Co Fe 2*Co Fe Co
Co Fe 3*Co Fe
2*Co 2*Fe 2*Co

. .

Equiatomic quaternary cases

4 Mn 2 Fe 2 Co 2 Ni 2
§C2°6C2°4C,=2,520

4 Mn 3 Fe 3 Co 3 Ni 3
1203'9C3'6C3=369,600

4 Mn 4 Fe 4 Co 4 Ni 4
16C4°1zc4°3C4=63,063,000

Stokes and D. M. Hatch, J. Appl. Cryst. 38, 237 (2005).

cif2esc - distance - diagnosis

4*Fe 4*Co
3*Fe 2*Co Fe 2*Co
Fe 4*Co 3*Fe

Only three inequivalent structures
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cif2esc Project

electronic
stzructure
calculations

atls w findsym* » | CIF = cif2esc »

lattice information " _
atom coordinates v ingerprint

distance * diagnosis * cmds B

structure
analysis

« “cif2esc” converts crystal structure information from CIF files to input

data of several DFT codes for electronic structure calculations and to
fingerprint data for structure analysis.
» “diagnosis” classifies crystal structure according to fingerprint distance

as its similarity computed by “distance” and “cmds” extracts principal
features by using dimension reduction.

» “atls” generates list of possible atom-type combinations from given

atom compositions, passing to input for the “findsym™’ application with
lattice information and atom coordinates to get CIF files.

*: H. T. Stokes, D. M. Hatch, and B. J. Campbell, ISOTROPY Software Suite, iso.byu.edu.
H. T. Stokes and D. M. Hatch, J. Appl. Cryst. 38, 237 (2005).
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Demonstration: Al,O; polymorph



Crystal Structure of Al,O,

b 3% 1\<
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7 mp-642363_Cmcm

15 mp-755175_P-31c

5 mp-32591_Cm

https://materialsproject.org

6 mp-638765_P-1

o

spatm B
2 v

11 mp-985587_P321
artificial bilayer film

a-pristine by Momida*

*: H. Momida et al., The 81st JSAP Autumn

Meeting 2020, 11p-Z07-13, 11 Sept. 2020. 75



Crystal Structure of Al,O,

Materials Project

BOON=-

6

N

8

mp-1143
mp-1245063
mp-1938
mp-2254

mp-638765
mp-642363
mp-754531

10 mp-776475
11 mp-985587
12 mp-7048

13 mp-754401
14 mp-754624
15 mp-755175

a-pristine

SG
R-3c
P1
Pbcn
Pna21

P-1
Cmcm
P21/c

la-3
P321
C2/m
Cmc21
R-3
P-31c
P1

HOF [meV/atom]

0( 0
+218 (+204)
+92 ( +94)
+18 ( +17)

+683 (+809)
+266 (+281)
+98 ( +77)

+44 ( +30)
+208 (+210)
+17 ( +10)
+74 ( +46)
+72 ( +66)
+79 ( +72)
+179

Gap [eV]
5.599 (6.044)
3.137 (3.326)
5.047 (5.313)
4.592 (4.830)

1.119 (1.136)
4.009 (4.249)
4.141 (4.374)

4.982 (5.216)
4.686 (4.807)
4.239 (4.605)
4.021 (4.235)
5.386 (5.797)
5.227 (5.494)
3.725

data with parentheses:
https://materialsproject.org

Comments
most stable
amorphous model

C44<0, C55<0

In,O; stable phase
artificial film [excluded]
Ga,0; stable phase

amorphous model*

*: H. Momida et al., The 81st JSAP Autumn
Meeting 2020, 11p-Z07-13, 11 Sept. 2020.

Where is the position of amorphous structure?
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Cs

C4

C3

C2

Structure Map of Al,O; w/o P321

1
I’~\ L4 PR °
IR ORI
[ )
-1 | |
z:\
]
.. -
[ )
o o~ ‘ .I‘~\ ¢ ° |
e} o
-~
-1 1 1 ‘
.~ “o
I o) 2 N
\Q.I' o (:')-’ °
or . . o |
i °
1 | ® a3 .
Pbcnp.atc © g~ P11
op o e Rl
-~ o = I
R3o.. _Fpazlics  Cme2d
“CZim
_1 | 1 L
-2 -1 0

2

: \ Distance as Similarity

Dimension Reduction

« Amorphous model structues (P1) can be
distinguished from P-1 by the PC C4.

Rmax = 5A
osoza  Fan(R)=gan(®) -1
RDF
4 w — e System SG HOF (meV/atom)
k F-Fingerprint 1 mp-1143 R-3c 0
12 mp-7048 C2/m +17
| 4 mp-2254 Pna21 +18
E 10 mp-776475 la-3 +44
] g 14 mp-754624  R-3 +72
) 13 mp-754401 Cmc21 +74
S 15 mp-755175 P-31c +79
= 3 mp-1938 Pbcn +92
4 ’ 8 mp-754531 P21/c +98
O-Al Al-Al a-pristine P1 +179
2 ‘ | ‘ | 2 mp-1245063 P1 +218
0 50 100 150 7 mp-642363 Cmcm +266
6 mp-638765 P-1 +683
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Cs

C4

C3

C2

Structure Map of Al,O; w/o P321

Oe
°
°
[
°
O
°
% o©

FINGERPRINT

Cl

Pben P-31¢+ ,; P1
L Cm.cm :~R7’i’, O o |
iPna21 e Cmc2{
R-3c H
% c2im ]
_1 L 1 L : 1 i L 1
2 O@AICN=60CN=5 1 2

R,..x = 5A
A=0.1A
c=0.2A

F-Fingerprint |

PC EIGENVECTOR

150

 The PCs C1 & C2 contain radial distribution
information between neighboring O-Al and O-
O while C3 & C4 do that between Al-Al.

0.2

0.1

-0.1

-0.2

-0.3

0.3

0.0

PC Eigenvector

C1C2C3C4C5

T

T

T

0

1
50
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Summary

* Features of crystal structure are

extracted by dimension reduction from 5. -

the fingerprint distances.

* The principal components C1 & C2 may °°

be related to the coordination numbers
of O@AIl and O@O, while C3 & C4
might be so to AI@ALI.

C3
o

* The features can be used as
descriptors to model the total energies

O of

and energy gaps by regression 1

analysis.

Pbcn P-31¢ -,/ P1
Cm.cm o ® i

TO: Sci. Technol. Adv. Mater.: Methods 4, 2355860 (2024).
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