

大阪大学 社会人教育プログラム

FLAPW法の応用

大阪大学大学院基礎工学研究科 附属スピントロニクス学術連携研究教育センター 小口 多美夫

Tamio Oguchi Center for Spintronics Research Network Osaka University

OUTLINE

- Precision of the FLAPW Method
 - Wave Functions
 - Electron Density and Potential
 - Perturbative Consideration
 - Choice of MT Sphere Radius
- Typical Applications
- Summary

WAVE FUNCTIONS

• LAPW Basis

$$\tilde{\phi}^{\mathbf{k}+\mathbf{K}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} e^{i(\mathbf{k}+\mathbf{K})\cdot\mathbf{r}}$$
$$\phi^{\mathbf{k}+\mathbf{K}}(\mathbf{r}) = \sum_{\alpha lm} \left[A_{\alpha lm}^{\mathbf{k}+\mathbf{K}} R_l(r_{\alpha}) + B_{\alpha lm}^{\mathbf{k}+\mathbf{K}} \dot{R}_l(r_{\alpha}) \right] i^l Y_{lm}(\hat{\mathbf{r}}_{\alpha})$$

Degrees of Variational Freedom

$$K_{\max}$$
 l_{\max}

• Choice of MT Sphere Radius

ELECTRON DENSITY & POTENTIAL

$$\tilde{n}(\mathbf{r}) = \sum_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}} n_{\mathbf{G}} \qquad n(\mathbf{r}) = \sum_{\alpha LM} n_{\alpha LM}(r_{\alpha}) i^{L} Y_{LM}(\hat{\mathbf{r}}_{\alpha})$$

$$\tilde{v}(\mathbf{r}) = \sum_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}} v_{\mathbf{G}} \qquad v(\mathbf{r}) = \sum_{\alpha LM} v_{\alpha LM}(r_{\alpha}) i^{L} Y_{LM}(\hat{\mathbf{r}}_{\alpha})$$

• Accuracy of Expansion

 G_{\max} L_{\max}

variational parameters?

• Choice of MT Sphere Radius

PERTURBATIVE CONSIDERATION

• Second-Order Perturbation

$$\Delta \varepsilon^{\mathbf{k}} = -\frac{|\langle \mathbf{k} + \mathbf{K} | \mathcal{H} | \mathbf{k} \rangle|^2}{|\mathbf{k} + \mathbf{K}|^2 - \varepsilon^{\mathbf{k}}}$$

• Variational Parameters of the Wave Functions

$$|\mathbf{k} + \mathbf{K}| \le K_{\max}$$

 l_{\max}

MT SPHERE RADIUS

When a sufficient l_{max} is assumed,

- In case of large MT sphere radius, because of smaller volume in the interstitial region fewer PW expansion is needed.
- In case of small MT sphere radius, because of larger volume in the interstitial region more PW expansion is needed.
- A variational dimensionless parameter

 RK_{\max}

WAVE FUNCTIONS & ELECTRON DENSITY

$$n(\mathbf{r}) = \sum_{\mathbf{k},n} |\psi_n^{\mathbf{k}}(\mathbf{r})|^2$$

 $G_{\max} \ge 2K_{\max}$

$$L_{\max} \ge 2l_{\max}$$

- Convergency of the electron density and potential expansion should be checked, especially when GGA is used.
- For small MT spheres used, higher G_{max} may be required to represent pseudized charge density.

MT SPHERE RADIUS

• Non-overlapping spheres

A margin should be considered if the atomic positions are changed, for example in a structural optimization calculation.

• Negligible penetration of the core functions outside

Within both assumptions with sufficient l_{max} and L_{max} , the accuracy does not depend on the choice of MT sphere radius but does on RK_{max} .

TOTAL ENERGY vs. MT RADIUS

PRECISION OF FLAPW METHOD

- Wave Functions RK_{\max}
- Electron Density and Potential

 $G_{\max} \ge 2K_{\max} \qquad L_{\max} \ge 2l_{\max}$

• Choice of MT Sphere Radius

• Over-completeness of APW Basis Functions

Since the PW basis is a complete set in all the space, an APW basis with the excessive number of PW results in indefinite solutions.

ELECTRIC FIELD GRADIENT

• **Definition of EFG**

$$V_{ij} = rac{\partial V(\mathbf{r})}{\partial i \partial j} \quad (i, j = x, y, z)$$

• Maximum Term

$$q = V_{ZZ}$$

• Asymmetric Parameter

$$\eta = \frac{V_{XX} - V_{YY}}{V_{ZZ}}$$

Nuclear Magnetic Resonance Measurements

$$v_Q = \frac{3eqQ}{2I(2I-1)h}$$
 Quadruple coupling frequency

EFG IN HCP METALS

EFG at Ta in PbTaSe₂

P-6m2 structure

PRB 102, 214504 (2020)

	$\nu_{\rm Q}$ (MHz)	η
Experiment		
Ta(1) site	58.7 ± 0.5	0.00-0.02
Ta(2) site	64.5 ± 0.5	0.03-0.04
DFT calculation		
P6m2	57.78	0.00
$P6_3/mmc$	46.39	0.00

REFERENCE: EFG

- EFG Calculations by FLAPW
 - PRL 54, 1192 (1985) Li₃N
 - PRB 37, 2792 (1988) hcp metals
 - PRB 102, 214504 (2020) PbTaSe₂
- EFG Calculations by FP-KKR
 - M. Ogura, PhD Thesis, Osaka University (2004)
- Review on EFG in NMR
 - Solid State Physics Vol. 5, pp. 321.

PHONON CALCULATION

- Equations of Motion $M_{\nu}\ddot{u}_{n\nu\alpha} = -\sum_{n'\nu'\beta} \frac{\partial^2 E}{\partial u_{n\nu\alpha}\partial u_{n'\nu'\beta}} u_{n'\nu'\beta}$ Displacements $u_{n\nu\alpha} = (M_{\nu})^{-\frac{1}{2}} C_{\nu\alpha} e^{i(\mathbf{q}\cdot\mathbf{R}_n \omega(\mathbf{q})t)}$ ${\color{black}\bullet}$
- **Dynamical Matrix** • $D_{\nu\alpha,\nu'\beta}(\mathbf{q}) = (M_{\nu}M_{\nu'})^{-\frac{1}{2}} \sum_{n'} \frac{\partial^2 E}{\partial u_{0\nu\alpha} \partial u_{n'\nu'\beta}} e^{i\mathbf{q}\cdot\mathbf{R}_{n'}}$ $\approx -(M_{\nu}M_{\nu'})^{-\frac{1}{2}}\frac{F_{0\nu\alpha}}{u_{0\nu'\beta}} \qquad \left(\begin{array}{c} u_{n\nu\alpha} = u_{0\nu\alpha}e^{i\mathbf{q}\cdot\mathbf{R}_{n}}\\ F_{n\nu\alpha} = -\frac{\partial E}{\partial u_{n\nu\alpha}}\end{array}\right)$

PHONON CALCULATION OF WC

ELASTIC AND DYNAMICAL STABILITY OF QUATERNARY HEUSLER

CoCrScAl

- Elastic stability Bulk modulus : $K = (C_{11} + 2C_{12})/2$ Shear modulus : $Cs = (C_{11} - C_{12})/2$ C_{44}
- Born-Cauchy conditions (GPa) /2 116.1 > 0 2 61.9 > 0 103 > 0 \Box Elastically stable

> Dynamical stability

No soft mode

F. Kuroda, T. Fukushima, TO, J. Appl. Phys. 127, 193904 (2020).

REFERENCE: ATOMIC FORCES BY FLAPW

- Soler, Williams, PRB40, 1560 (1989); PRB42, 9728 (1990); PRB47, 6784 (1993).
- Yu, Singh, Krakauer, PRB43, 6411 (1991); PRB45, 8671 (1992).
- Goedecker, Maschke, PRB45, 1597 (1992).
- T. Oguchi, "Interatomic Potentials and Structural Stability", ed. by K. Terakura and H. Akai, (Springer-Verlag, 1993) p. 33.
- D. J. Singh, "Planewaves, pseudopotentials and the LAPW method" (Kluwer Academic, Boston, 1994).

X-ray Absorption Spectroscopy (XAS)

- X-ray absorption: electronic transitions by photon from inner core states to empty states
 - suitable for studying valence states with specific element, orbital and symmetry by tuning the photon energy and polarization

Fundamentals of XAS

• Transition Probability by Fermi Golden Rule

$$W(\omega) = \frac{2\pi}{\hbar} \sum_{f,i} |\langle f | \hat{F} | i \rangle|^2 \delta(\varepsilon_f - \varepsilon_i - \hbar \omega)$$

- Rigorous Theory
- ε_i ε_f Total energies of initial and final states
- |i
 angle~|f
 angle Many-body initial and final states
 - \hat{F} Perturbation by photon in many-body hamiltonian
- Quasi-particle (One-electron) Approach
- ε_i ε_f Orbital energies of initial and final states
- $|i
 angle \,\,\,|f
 angle$ One-electron initial and final states
 - \hat{F} Perturbation by photon in one-electron hamiltonian

·Ef

 $\hbar\omega$

Theoretical Approaches

- Quasi-particle Approaches
 - Ground-state calculation
 - Core-hole calculation
 - Perturbation calculation (GW, ...)
- ΔSCF Approach
 - (Excited State) (Ground State)
- Many Body Approaches

spectrum shape polarization dependence

excitation energy

ΔSCF

- Self-Consistent-Field (SCF) DFT Calculation
 - Grand state: EGS
 - Excited state: EEX
- Excitation Energy = *E*_{EX} *E*_{GS}

Supercell Model

- Core hole: well localized
- Excited electron: usually delocalized
 - Hybridization with neighbors
 - Electrostatic fields due to holes and excited electrons at neighboring sites

hole concentration

XAS of MgO

Grand-State Approximation

Thick lines: broadened by Lorentzian

Summary of XAS

- XAS calculations with core hole
 - Better shape of the spectra
 - Better excitation energy in the ΔSCF sense
- Test calculations at *K* edges of MgO

- Further test
 - Different edges (L, M, N, …)
 - > Different materials (magnetic, ...)
 - **Effects on polarization (MCD, LD, ...)**

SUMMARY

- FLAPW Method
 - Precise and robust, but often heavy
 - $\succ \qquad \text{CPU} \sim N_{\text{atom}}^3$
 - Complementary role with PP-PW
 - Care of the convergency in several parameters involved
- A wide variety of applications of FLAPW

First-Principles Calculations

